Neural Network Aided Kalman Filtering for Integrated Gps/ins Geo-referencing Platform
نویسندگان
چکیده
Kalman filtering theory plays an important role in integrated GPS/INS georeference system design. A Kalman filter (KF) uses measurement updates to correct system states error and to limit the errors in navigation solutions. However, only when the system dynamic and measurement models are correctly defined, and the noise statistics for the process are completely known, a KF can optimally estimate a system’s states. Without measurement updates, a Kalman filter’s prediction diverges; therefore the performance of an integrated GPS/INS georeference system may degrade rapidly when GPS signals are unavailable. It is a challenge to deal with this problem in real time though it can be handled in post processing by smoothing methods. This paper presents a neural network (NN) aided Kalman filtering method to improve navigation solutions of integrated GPS/INS georeference system. It is known that the errors inherent to strapdown inertial sensors are affected by the platform manoeuvre and environment conditions etc., which are hard to be modelled precisely. On the other hand, NNs have the capability to map inputoutput relationships of a system without apriori knowledge about them. A properly designed NN is able to learn and extract complex relationships given enough training. Furthermore, it is able to adapt to the change of sensors and dynamic platforms. In the proposed loosely coupled GPS/INS georeference system, an extended KF (EKF) estimates the INS measurement errors, plus position, velocity and attitude errors, and provides precise navigation solutions while GPS signals are available. At the same time, a multi-layer NN is trained to map the vehicle manoeuvre with INS prediction errors during each GPS epoch, which is the input of the EKF. During GPS signal blockages, the NN can be used to predict the INS errors for EKF measurement updates, and in this way to improve navigation solutions. The principle of this hybrid method and the NN design are presented. Land vehicle based field test data are processed to evaluate the performance of the proposed method. * Corresponding author.
منابع مشابه
Neural Network Aided Kalman Filtering For Integrated GPS/INS Navigation System
Kalman filter (KF) uses measurement updates to correct system states error and to limit the errors in navigation solutions. However, only when the system dynamic and measurement models are correctly defined, and the noise statistics for the process are completely known, KF can optimally estimate a system’s states. Without measurement updates, Kalman filter’s prediction diverges; therefore the p...
متن کاملAn Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors
Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inert...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملFlight Test of a Gps/ins/pseudolite Integrated System for Airborne Mapping
Carrier phase based DGPS systems have been used for airborne mapping for many years. Integrated GPS/INS systems are also becoming popular in order to improve the positioning accuracy, system reliability and achieve direct geo-referencing. However, this approach is limited by the current GPS constellation. Further improvement is required to achieve centimetre level positioning accuracy, which be...
متن کاملA New Neural Network-based Algorithm for GPS/INS Integration
Integrated navigation systems have been becoming more and more important in many applications. Particularly, Global Positioning System (GPS) and Inertial Navigation System (INS) integration is being given much attention in the past few years, as it is widely used in several positioning and navigation fields. Both of such two systems have their unique features and shortcomings. Their integration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007